Bayesian hypothesis testing for one bit compressed sensing with sensing matrix perturbation

نویسندگان

  • Hadi Zayyani
  • Mehdi Korki
  • Farrokh Marvasti
چکیده

This letter proposes a low-computational Bayesian algorithm for noisy sparse recovery in the context of one bit compressed sensing with sensing matrix perturbation. The proposed algorithm which is called BHT-MLE comprises a sparse support detector and an amplitude estimator. The support detector utilizes Bayesian hypothesis test, while the amplitude estimator uses an ML estimator which is obtained by solving a convex optimization problem. Simulation results show that BHT-MLE algorithm offers more reconstruction accuracy than that of an ML estimator (MLE) at a low computational cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing

Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...

متن کامل

A Block-Wise random sampling approach: Compressed sensing problem

The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...

متن کامل

Bayesian signal reconstruction for 1-bit compressed sensing

The 1-bit compressed sensing framework enables the recovery of a sparse vector x from the sign information of each entry of its linear transformation. Discarding the amplitude information can significantly reduce the amount of data, which is highly beneficial in practical applications. In this paper, we present a Bayesian approach to signal reconstruction for 1-bit compressed sensing, and analy...

متن کامل

One-Bit Compressive Sensing with Partial Support Information

This work develops novel algorithms for incorporating prior-support information into the field of One-Bit Compressed Sensing. Traditionally, Compressed Sensing is used for acquiring high-dimensional signals from few linear measurements. In applications, it is often the case that we have some knowledge of the structure of our signal(s) beforehand, and thus we would like to leverage it to attain ...

متن کامل

Sparse Diffusion Steepest-Descent for One Bit Compressed Sensing in Wireless Sensor Networks

This letter proposes a sparse diffusion steepestdescent algorithm for one bit compressed sensing in wireless sensor networks. The approach exploits the diffusion strategy from distributed learning in the one bit compressed sensing framework. To estimate a common sparse vector cooperatively from only the sign of measurements, steepest-descent is used to minimize the suitable global and local con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1511.05660  شماره 

صفحات  -

تاریخ انتشار 2015